Integral Inequalities for Self-Reciprocal Polynomials
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/pmsc/120/02/0131-0137
Let $n\geq 1$ be an integer and let $\mathcal{P}_n$ be the class of polynomials 𝑃 of degree at most 𝑛 satisfying $z^nP(1/z)=P(z)$ for all $z\in C$. Moreover, let 𝑟 be an integer with $1\leq r\leq n$. Then we have for all $P\in\mathcal{P}_n$:
$$\alpha_n(r)\int^{2\pi}_0|P(e^{it})|^2dt\leq\int^{2\pi}_0|P^{(r)}(e^{it})|^2dt\leq\beta_n(r)\int^{2\pi}_0|P(e^{it})|^2dt$$
with the best possible factors
\begin{equation*}\alpha_n(r)=\begin{cases}\prod^{r-1}_{j=0}\left(\frac{n}{2}-j\right)^2, < \text{if 𝑛 is even},\\ \frac{1}{2}\left[\prod^{r-1}_{j=0}\left(\frac{n+1}{2}-j\right)^2+\prod^{r-1}_{j=0}\left(\frac{n-1}{2}-j\right)^2\right], < \text{if 𝑛 is odd},\end{cases}\end{equation*}
and
\begin{equation*}\beta_n(r)=\frac{1}{2}\prod\limits^{r-1}_{j=0}(n-j)^2.\end{equation*}
This refines and extends a result due to Aziz and Zargar (1997).
Volume 132, 2022
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.