Smooth Maps of a Foliated Manifold in a Symplectic Manifold
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/pmsc/119/03/0333-0343
Let 𝑀 be a smooth manifold with a regular foliation $\mathcal{F}$ and a 2-form 𝜔 which induces closed forms on the leaves of $\mathcal{F}$ in the leaf topology. A smooth map $f:(M,\mathcal{F})\longrightarrow(N, \sigma)$ in a symplectic manifold $(N, \sigma)$ is called a foliated symplectic immersion if 𝑓 restricts to an immersion on each leaf of the foliation and further, the restriction of $f^∗\sigma$ is the same as the restriction of 𝜔 on each leaf of the foliation.
If 𝑓 is a foliated symplectic immersion then the derivative map $Df$ gives rise to a bundle morphism $F:TM\longrightarrow TN$ which restricts to a monomorphism on $T\mathcal{F}\subseteq TM$ and satisfies the condition $F^∗\sigma=\omega$ on $T\mathcal{F}$. A natural question is whether the existence of such a bundle map 𝐹 ensures the existence of a foliated symplectic immersion 𝑓. As we shall see in this paper, the obstruction to the existence of such an 𝑓 is only topological in nature. The result is proved using the ℎ-principle theory of Gromov.
Mahuya Datta1 Md Rabiul Islam2
Volume 131, 2021
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.