• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/pmsc/119/02/0149-0158

    • Keywords

       

      Baer modules; principally quasi-Baer modules; quasi-Baer modules; semicommutative modules.

    • Abstract

       

      Let 𝑅 be a ring with identity, 𝑀 a right 𝑅-module and $S=\mathrm{End}_R(M)$. In this note, we introduce 𝑆-semicommutative, 𝑆-Baer, $S-q.$-Baer and $S-p.q.$-Baer modules. We study the relations between these classes of modules. Also we prove if 𝑀 is an 𝑆-semicommutative module, then 𝑀 is an $S-p.q.$-Baer module if and only if $M[x]$ is an $S[x]-p.q.$-Baer module, 𝑀 is an 𝑆-Baer module if and only if $M[x]$ is an $S[x]$-Baer module, 𝑀 is an $S-q.$-Baer module if and only if $M[x]$ is an $S[x]-q.$-Baer module.

    • Author Affiliations

       

      Nazim Agayev1 Tahire Özen2 Abdullah Harmanci3

      1. Department of Pedagogy, Qafqaz University, Baku Azerbaijan
      2. Mathematics Department, Ízzet Baysal University, Bolu, Türkiye
      3. Mathematics Department, Hacettepe University, Ankara, Türkiye
    • Dates

       
  • Proceedings – Mathematical Sciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.