Hyperbolic Unit Groups and Quaternion Algebras
S O Juriaans I B S Passi A C Souza Filho
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/pmsc/119/01/0009-0022
We classify the quadratic extensions $K=\mathbb{Q}[\sqrt{d}]$ and the finite groups 𝐺 for which the group ring $\mathfrak{o}_K[G]$ of 𝐺 over the ring $\mathfrak{o}_K$ of integers of 𝐾 has the property that the group $\mathcal{U}_1(\mathfrak{o}_K[G])$ of units of augmentation 1 is hyperbolic. We also construct units in the $\mathbb{Z}$-order $\mathcal{H}(\mathfrak{o}_K)$ of the quaternion algebra $\mathcal{H}(K)=\left\frac{-1,-1}{k}(\right)$, when it is a division algebra.
S O Juriaans1 I B S Passi2 A C Souza Filho3
Volume 133, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.