• On unified fractional integral operators

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Fractional integral operator; general class of polynomials; multivariableH-function; Mellin transform; Mellin convolution

    • Abstract


      The present paper is in continuation to our recent paper [6] in these proceedings. Therein, three composition formulae for a general class of fractional integral operators had been established. In this paper, we develop the Mellin transforms and their inversions, the Mellin convolutions, the associated Parseval-Goldstein theorem and the images of the multivariableH-function together with applications for these operators. In all, seven theorems and two corollaries (involving the Konhauser biorthogonal polynomials and the Jacobi polynomials) have been established in this paper. On account of the most general nature of the polynomials Snm[x] and the multivariableH-function whose product form the kernels of our operators, a large number of (new and known) interesting results involving simpler polynomials and special functions (involving one or more variables) obtained by several authors and hitherto lying scattered in the literature follow as special cases of our findings. We give here exact references to the results (in essence) of seven research papers which follow as simple special cases of our theorems.

    • Author Affiliations


      K C Gupta1 R C Soni1

      1. Department of Mathematics, M. R. Engineering College, Jaipur - 302017, India
    • Dates

  • Proceedings – Mathematical Sciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.