DirichletL-function and power series for Hurwitz zeta function
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/pmsc/103/01/0027-0039
For 0 < α < 1, letζ(s, α) be the Hurwitz zeta function and let ζ1 (s, α) = ζ(s, α) -α− s. For a fixeds, we developζ1(s,α) as a power series in α in the complex circle ¦α¦ < 1. If$$\sum\limits_{\chi \left( {\bmod q} \right)} {L\left( {s,\chi } \right)L\left( {s',\bar \chi } \right)} = \frac{{\phi \left( q \right)}}{{q^{s + s'} }}\sum\limits_{k/q} \mu \left( {\frac{q}{k}} \right)\left( {\sum\limits_{a = 1}^k {\left( {\frac{k}{a}} \right)^{\operatorname{Re} s + \operatorname{Re} s'} + Q\left( {s,s',k} \right)} } \right)$$, we obtain an asymptotic expansion for Q(k) =Q(s,s′,k) using the power series forζ1(s,α)
Volume 133, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.