• Frame-dragging effects in obliquely rotating magnetars

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Magnetar; frame-dragging; geodesic.

    • Abstract


      Magnetars are highly magnetized neutron stars. For a slowly rotating magnetar, the strong magnetic field deforms the star, making it axisymmetric with respect to the magnetic axis (the body symmetry axis). In magnetars, the rotation axis is tilted to the magnetic axis, and we have an oblique rotator. General relativistic treatment of the obliquely rotating magnetar gives rise to frame-dragging velocities both in the azimuthal and polar directions. Solving the Einstein equation up to first-order perturbation in rotation and second-order perturbation in the magnetic field, we calculate the geodesic of a particle near the star’s surface. The polar frame-dragging velocity makes the particle orbit non-planar, and the particle moves both along the azimuthal and polar directions for a fixed radial distance. The extent of particle deviation from planar orbit depends on the magnetic field strength and the misalignment angle. We find that the continuous gravitational wave emitted from such an obliquely rotating axisymmetric star is non-zero, and for a small misalignment angle, the gravitational wave amplitude depends more on the azimuthal frame-draggingvelocity. In contrast, for a large misalignment angle, the polar frame-dragging velocity dominates. The energy loss from such a misaligned rotator depends more significantly on the polar frame-dragging velocity and therefore, can significantly affect the magnetosphere around a magnetar.

    • Author Affiliations

    • Dates

  • Journal of Astrophysics and Astronomy | News

    • Continuous Article Publication

      Posted on January 27, 2016

      Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.