• Revisiting the Earth’s atmospheric scattering of X-ray/$\gamma$-rays and its effect on space observation: Implication for GRB spectral analysis

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/joaa/042/0069

    • Keywords

       

      Gamma ray bursts; atmospheric scattering; X-ray; GEANT4.

    • Abstract

       

      A considerable fraction of incident high energy photons from astrophysical transients such as Gamma Ray Bursts (GRBs) is Compton scattered by the Earth’s atmosphere. These photons, sometimes referred to as the ‘‘reflection component’’, contribute to the signal detected by space-borne X-ray/c-rayinstruments. The effectiveness and reliability of source parameters such as position, flux, spectra and polarization, inferred by these instruments are therefore highly dependent on the accurate estimation of this scattered component. Current missions use dedicated response matrices to account for these effects. However, these databases are not readily adaptable for other missions, including many upcoming transient search and gravitational wave high-energy electromagnetic counter part detectors. Furthermore, possible systematiceffects in these complex simulations have not been thoroughly examined and verified in literature. We are in the process of investigation of the effect with a detailed Monte Carlo simulations in GEANT4 for a Low Earth Orbit (LEO) X-ray detector. Here, we discuss the outcome of our simulation in form of AtmosphericResponse Matrix (ARM) and its implications of any systematic errors in the determination of source spectral characteristics. We intend to apply our results in data processing and analysis for AstroSat-CZTI observation of such sources in near future. Our simulation output and source codes will be made publicly available for use by the large number of upcoming high energy transient missions, as well as for scrutiny and systematic comparisons with other missions.

    • Author Affiliations

       

      SOURAV PALIT1 AKASH ANUMARLAPUDI1 2 VARUN BHALERAO1

      1. Department of Physics, Indian Institute of Technology Bombay, Mumbai 400 076, India.
      2. Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
    • Dates

       
  • Journal of Astrophysics and Astronomy | News

    • Continuous Article Publication

      Posted on January 27, 2016

      Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.