• $Suzaku$ observation of the eclipsing high mass X-ray binary pulsar XTE J1855-026

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      X-ray: neutron stars—X-ray binaries: individual (XTE J1855-026).

    • Abstract


      We report results from analysis performed on an eclipsing supergiant high mass X-ray binary pulsar XTE J1855-026 observed with the X-ray Imaging Spectrometer (XIS) on-board Suzaku Observatory in April 2015. Suzaku observed this source for a total effective exposure of ∼87 ks just before an eclipse. Pulsations are clearly observed and the pulse profiles of XTE J1855-026 did not show significant energy dependence duringthis observation consistent with previous reports. The time averaged energy spectrum of XTE J1855-026 in the1.0–10.5 keV energy range can be well fitted with a partial covering power law model modified with interstellarabsorption along with a black-body component for soft excess and a gaussian for iron fluorescence line emision. The hardness ratio evolution during this observation indicated significant absorption of soft X-rays in some segments of the observation. For better understanding of the reason behind this, we performed time-resolved spectroscopy in the 2.5–10.5 keV energy band which revealed significant variations in the spectral parameters,especially the hydrogen column density and iron line equivalent width with flux. The correlated variations in the spectral parameters indicate towards the presence of clumps in the stellar wind of the companion star accounting for the absorption of low energy X-rays in some time segments.

    • Author Affiliations



      1. Raman Research Institute, Bangalore 560 080, India.
      2. Henry Baker College, Melukavu, Kottayam 686 652, India.
    • Dates

  • Journal of Astrophysics and Astronomy | News

    • Continuous Article Publication

      Posted on January 27, 2016

      Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.