Magneto–Thermal Evolution of Neutron Stars with Emphasis to Radio Pulsars
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/joaa/038/03/0046
The magnetic and thermal evolution of neutron stars is a very complex process with many non-linear interactions. For a decent understanding of neutron star physics, these evolutions cannot be considered isolated. A brief overview is presented, which describes the main magneto–thermal interactions that determine the fate of both isolated neutron stars and accreting ones. Special attention is devoted to the interplay of thermal and magnetic evolution at the polar cap of radio pulsars. There, a strong meridional temperature gradient is maintained over the lifetime of radio pulsars. It may be strong enough to drive thermoelectric magnetic field creation which perpetuate a toroidal magnetic field around the polar cap rim. Such a local field component may amplify and curve the poloidal surface field at the cap, forming a strong and small scale magnetic field as required for the radio emission of pulsars.
Volume 44, 2023
All articles
Continuous Article Publishing mode
Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.