• Abundances of La138 and Ta180 Through ν-Nucleosynthesis in $20 M_\odot$ Type II Supernova Progenitor, Guided by Stellar Models for Seeds

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Supernova; nucleosynthesis; neutrino process

    • Abstract


      Yields of nature’s rarest isotopes La^{138} and Ta^{180} are calculated by neutrino processes in the Ne-shell of density $\rho ≈ 10^4 g/cc$ in a type II supernova (SN II) progenitor of mass 20 $M_\odot$. Two extended sets of neutrino temperature $- T_{\nue}$ = 3, 4, 5, 6 MeV and $T_{\nu(\mu/\tau)}$= 4, 6, 8, 10, 12 MeV respectively for charged and neutral current processes are taken. Solar mass fractions of the seeds La139, Ta181, Ba138 and Hf180 are taken for calculation. They are assumed to be produced in some s-processing events of earlier generation massive ‘seed stars’ with average interior density range $\langleρ\rangle \approx 10^3−10^6 g/cc$. The abundances of these two elements are calculated relative to O16 and are found to be sensitive to the neutrino temperature. For neutral current processes with the neutron emission branching ratio, $b_n = 3.81 \times 10^{-4}$ and $b_n = 9.61 \times 10^{−1}$, the relative abundances of La138 lie in the ranges $4.48 \times 10^{−14}−2.94 \times 10^{−13}$ and $1.13 \times 10^{−10} − 7.43 \times 10^{−10}$ respectively. Similarly, the relative abundances of Ta180 lie in the ranges $1.80 \times 10^{−15} − 1.17 \times 10^{−14}$ and 4.53 \times 10^{−12}−2.96 × 10^{−11} respectively for the lower and higher values of the neutron emission branching ratio. For charged current processes, the relative abundances of La138 and Ta180 are found to be in the ranges $1.38 \times 10^{−9} − 7.62 \times 10^{−9}$ and $2.09 \times 10^{-11} − 1.10 \times 10^{−10}$ respectively. Parametrized by density of the ‘seed stars’, the yields are found to be consistent with recent supernova simulation results throughout the range of neutrino temperatures. La138 and Ta180 are found to be efficiently produced in charged current interaction.

    • Author Affiliations


      N. Lahkar1 2 S. Kalita1 H. L. Duorah1 K. Duorah1

      1. Department of Physics, Gauhati University, Guwahati 781 014, India.
      2. Department of Physics, Girijananda Chowdhury Institute of Management & Technology, Guwahati 781 017, India.
    • Dates

  • Journal of Astrophysics and Astronomy | News

    • Continuous Article Publication

      Posted on January 27, 2016

      Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.