• Forbidden Zones for Circular Regular Orbits of the Moons in Solar System, R3BP

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/joaa/038/01/0005

    • Keywords

       

      Restricted three-body problem; orbits of the Moon; relative motion.

    • Abstract

       

      Previously, we have considered the equations of motion of the three-body problem in a Lagrange form (which means a consideration of relative motions of 3-bodies in regard to each other). Analysing such a system of equations, we considered the case of small-body motion of negligible mass m3 around the second of two giant-bodies $m_1$, $m_2$ (which are rotating around their common centre of masses on Kepler’s trajectories), the mass of which is assumed to be less than the mass of central body. In the current development, we have derived a key parameter $\eta$ that determines the character of quasi-circular motion of the small third body $m_3$ relative to the second body $m_2$ (planet). Namely, by making several approximations in the equations of motion of the three-body problem, such the system could be reduced to the key governing Riccati-type ordinary differential equations. Under assumptions of R3BP (restricted three-body problem), we additionally note that Riccati-type ODEs above should have the invariant form if the key governing (dimensionless) parameter $\eta$ remains in the range $10^{−2}$ ∻ $10^{−3}$. Such an amazing fact let us evaluate the forbidden zones for Moon’s orbits in the inner solar system or the zones of distances (between Moon and Planet) for which the motion of small body could be predicted to be unstable according to basic features of the solutions of Riccati-type.

    • Author Affiliations

       

      Sergey V. Ershkov1

      1. Sternberg Astronomical Institute, M.V. Lomonosov’s Moscow State University, 13 Universitetskij Prospect, Moscow 119992, Russia.
    • Dates

       
  • Journal of Astrophysics and Astronomy | News

    • Continuous Article Publication

      Posted on January 27, 2016

      Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.

© 2017-2019 Indian Academy of Sciences, Bengaluru.