A Comparative Study on SN II Progenitors for the Synthesis of Li7 and B11 with the help of Neutrinos
N. Lahkar S. Kalita H. L. Duorah K. Duorah
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/joaa/036/03/0375-0383
The synthesis of Li7 and B11 confronts astrophysicists. Type II (SN II) and Type Ic (SN Ic) supernovae are supposed to be the producers of these two elements. In this study we calculate the yields of these two elements for SN II progenitors with 8, 10 and 20 solar masses. The process considered here is the neutral current interaction of heavy flavour neutrinos (𝜈𝜇 or 𝜈𝜏) with He4 nuclei of the helium zone. The low mass progenitors are considered because the helium zone lies much closer to the core and hence experiences large neutrino flux. The starting point of the helium zone depends on detail stellar model. However, the shell radius at which it begins is available for these stars. 20 solar mass is considered for comparison of our production ratio Li/B with that of an earlier work. It is contrasted with the shock heating yields in the hydrogen envelope. The Li/B ratio has been found to be about 0.96. In the three model stars, the Li7 and B11 yields are found to be in the range 6.61×10−6 −2.63×10−6 𝑀Sun and 6.92×10−6 −2.75×10−6 𝑀Sun respectively as we go from 8 to 20 𝑀Sun. Some equivalence is found with shock induced nucleosynthesis model for SN II. The SN II yield is found to be compatible with that of hypernovae produced by C–O core collapse but higher than the yields obtained by neutrino processes in SNIc.
N. Lahkar1 2 S. Kalita1 H. L. Duorah1 K. Duorah1
Volume 44, 2023
All articles
Continuous Article Publishing mode
Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.