• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      R3BP—P-R drag—oblateness—out-of-plane equilibrium points.

    • Abstract


      This paper investigates the motion of a test particle around the out-of-plane equilibrium points in the circular photogravitational restricted three-body problem when the effect of radiation pressure from the smaller primary and its Poynting-Robertson (P-R) drag are taken into account, and the bigger primary is modeled as an oblate spheroid. These points lie in the 𝑥𝑧-plane almost directly above and below the center of the oblate primary. The equilibrium points are sought, and we observe that, there are two coordinate points 𝐿6,7 which depend on the oblateness of the bigger primary, and the radiation pressure force and P-R drag of the smaller primary. The positions and linear stability of the problem are investigated both analytically and numerically for the binary system Cen X-4. The out-of-plane equilibrium points are found to be unstable in the sense of Lyapunov due to the presence of a positive real root.

    • Author Affiliations


      Jagadish Singh1 Tajudeen Oluwafemi Amuda1

      1. Department of Mathematics, Faculty of Science, Ahmadu Bello University, P.M.B. 2222 Sokoto Road, Samaru, Zaria-Nigeria.
    • Dates

  • Journal of Astrophysics and Astronomy | News

    • Continuous Article Publication

      Posted on January 27, 2016

      Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.