Initiation of cmes by magnetic flux emergence
Govind Dubey Bart van der Holst Stefaan Poedts
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/joaa/027/02-03/0159-0166
The initiation of solar Coronal Mass Ejections (CMEs) is studied in the framework of numerical magnetohydrodynamics (MHD). The initial CME model includes a magnetic flux rope in spherical, axi-symmetric geometry. The initial configuration consists of a magnetic flux rope embedded in a gravitationally stratified solar atmosphere with a background dipole magnetic field. The flux rope is in equilibrium due to an image current below the photosphere. An emerging flux triggering mechanism is used to make this equilibrium system unstable. When the magnetic flux emerges within the filament below the flux rope, this results in a catastrophic behavior similar to previous models. As a result, the flux rope rises and a current sheet forms below it. It is shown that the magnetic reconnection in the current sheet below the flux rope in combination with the outward curvature forces results in a fast ejection of the flux rope as observed for solar CMEs. We have done a parametric study of the emerging flux rate.
Govind Dubey1 Bart van der Holst1 Stefaan Poedts1
Volume 41, 2020
All articles
Continuous Article Publishing mode
Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.