• Determination of linear polarization and faraday rotation of pulsar signals from spectral intensity modulation

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/joaa/020/01-02/0037-0050

    • Keywords

       

      Stars: neutron; pulsars; interstellar medium: Faraday rotation; telescope: polarization

    • Abstract

       

      Most of the known pulsars are sources of highly linearly polarized radiation. Faraday rotation in the intervening medium rotates the plane of the linear polarization as the signals propagate through the medium. The Rotation Measure (RM), which quantifies the amount of such rotation as a function of wavelength, is useful in studying the properties of the medium and in recovering the intrinsic polarization characteristics of the pulsar signal. Conventional methods for polarization measurements use telescopes equipped with dual orthogonally polarized feeds that allow estimation of all 4 Stokes parameters. Some telescopes (such as the Ooty Radio Telescope) that offer high sensitivity for pulsar observations may however be receptive to only a single linear polarization. In such a case, the apparent spectral intensity modulation, resulting from differential Faraday rotation of the linearly polarized signal component within the observing bandwidth, can be exploited to estimate the RM as well as to study the linear polarization properties of the source. In this paper, we present two improved procedures by which these observables can be estimated reliably from the intensity modulation over large bandwidths, particularly at low radio frequencies. We also highlight some other applications where such measurements and procedures would be useful.

    • Author Affiliations

       

      P. S. Ramkumar1 A. A. Deshpande1

      1. Raman Research Institute, C.V Raman Avenue, Bangalore - 560 080, India
    • Dates

       
  • Journal of Astrophysics and Astronomy | News

    • Continuous Article Publication

      Posted on January 27, 2016

      Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.