The 1985 outburst of RS Ophiuchi: Spectroscopic results
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/joaa/010/03/0237-0255
Optical spectroscopic data on the recurrent nova RS Ophiuchi obtained between 32 and 108 days after its last outburst on 1985 January 27 are presented. RS Oph was in the coronal-line phase at that time. The widths of the permitted as well as coronal-lines decreased continuously. Assuming that the ejected envelope decelerated due to its interaction with circum stellar matter, its size is deduced as a function of time. Observed fluxes in permitted lines would then imply that the electron density decreased from 3 × 109 cm#x2212;3 on day 32 to 1.8 × 108 cm-3 on day 108, for an assumed filling factor of 0.01. The helium abundance in the ejecta is estimated to be n(He)/n(H) ∼ 0.16. The mass of the unshocked ejecta was 3 × 10-6 (Φ/0.01)1/2 M⊙, (at this stage, where f is the filling factor. Observed fluxes in coronal-lines imply that the temperature of coronal-line region decreased from 1.5 × 106 K on day 32 to 1.1 × 106 K on day 108. Most of the coronal line emission, as well as He n emission arises in shocked and cooling ejecta. This region is not isothermal, but contains material at a wide range of temperatures. Mass of the shocked ejecta is estimated to be in the range 10−7−10−6 M⊙ Based on the number of H- and He-ionizing photons, we estimate that the ionizing source evolved from a radius and temperature of (2 × l012 cm, 3 × 104 K) on day 32 to (6 × l09 cm, 3.6 × 105K) on day 204.
We also present the spectra of RS Oph recorded in quiescent phase, 2 and 3 years after outburst, for comparison. The spectrum is dominated by that of M2 giant secondary, with superposed emission lines of H and He I
Volume 44, 2023
All articles
Continuous Article Publishing mode
Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.