• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      full-length transcriptome; NRAMP gene; gene expression; cadmium tolerance; Arabis paniculata.

    • Abstract


      Arabis paniculata has been reported as a hyperaccumulator and functions in cadmium (Cd) tolerance and accumulation. However, the genes involved in Cd stress resistance in A. paniculata are still unknown. In this work, genes of the natural resistanceassociated macrophage proteins (NRAMPs) were characterized in A. paniculata, and their evolutionary relationship and expression patterns were analysed. Expression profiles indicated that ApNRAMPs showed large differences in response to Cd stress. It was highly induced by Cd in root and shoot tissues. To investigate the function of ApNRAMP4 under Cd stress, ApNRAMP4 was cloned and expressed in yeast and Arabidopsis. The results indicated that yeast and Arabidopsis expressing ApNRAMP4 showed normal growth under Cd stress. In addition, transgenic yeast and Arabidopsis showed the ability to concentrate Cd. Under 20 μM CdCl2, Cd concentrations in wild type (WT) and transgenic yeast were 3.11 and 5.92 mg/kg, respectively. Cd concentrations in root tissues of WTand transgenic Arabidopsis were 0.18 and0.54 mg/kg, respectively. In shoot tissues of WT and transgenic Arabidopsis, Cd concentrations were 0.13 and 0.49 mg/kg, respectively. This report provides genomic information on hyperaccumulator A. paniculata. In addition, the present work identified key NRAMP genes that may serve as resources for heavy metal phytoremediation.

    • Author Affiliations



      1. School of Life Sciences, Guizhou Province, Guizhou Normal University, Guiyang, People’s Republic of China
      2. Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People’s Republic of China
    • Dates

    • Supplementary Material

  • Journal of Genetics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.