• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      C-banding; in situ hybridization; stripe rust; Secale africanum.

    • Abstract


      A stable, highly fertile wheat Secale africanum substitution line LF24, derived from the F7 generation of a cross between Mianyang11 (MY11) and Triticum durum, S. africanum amphiploid (YF) was identified through molecular cytogenetic analysis. Application of C-banding, in situ hybridization and molecular markers analysis showed that LF24 was a wheat S. africanum 2Ra(2D) substitution line. When inoculated with stripe rust isolates, T. durum and MY11 were highly susceptible, while S. africanum, YF and LF24 were immune. It is confirmed through molecular cytogenetic analysis that the stripe rust resistance of LF24 was derived from S. africanum chromosome 2Ra. We compared the banding patterns and disease resistance of reported chromosomes 2R from different S. cereale introduced into wheat background, and found that there was new stripe rust resistance gene(s) on S. africanum 2Ra. LF24 is a new substitution line which can be used as stripe rust resistant source in wheat improvement.

    • Author Affiliations


      Mengping Lei1 Guangrong Li1 Sufen Zhang1 Cheng Liu1 Zujun Yang1

      1. School of Life Science and Technology, University of Electronic Science and Technology of China, 4 Jianshe Road, Chengdu 610054, People’s Republic of China
    • Dates

  • Journal of Genetics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.