• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/jess/130/0102

    • Keywords

       

      Magnetotellurics; dimensionality analysis; normalized weight index; phase tensor analysis; modelling

    • Abstract

       

      Magnetotelluric (MT) data has been collected along 32 stations along E–W profile in northern part and eight LMT (long period MT) stations in north-central part of Saurashtra region. Dimensionality analysis is carried out prior to MT modelling for obtaining the subsurface dimension as well as the direction of the underlying substructures. To estimate the subsurface dimensionality from MT data, different techniques Swift skew, Bhar’s skew, normalized weights, phase tensor (PT) analysis and Wall’s rotational invariant approach have been applied. These results suggest 1D structure for lower periods (0.01–1 s) and 3D structure for higher periods (1–10000 s) along two different profiles indicating that the study area is highly heterogeneous. Regional strike has been estimated through phase tensor (PT) and Groom–Bailey (GB) techniques suggests N40$^{\circ}$ E regional strike direction that correlates well with the Delhi–Aravalli tectonic trend. 2D modelling of MT/LMT data sets brings out different resistivity and conductivity blocks. Basaltic magmatic intrusion and its recrystallization have resulted in resistivity blocks with conductivity anomalies (trapped fluids) in between them. It has been reflected as 3D structures at higher periods. Different sedimentary basins at shallow depth are observed as 1D structure in dimensionality analysis.

      $\bf{Highlights}$

      $\bullet$ Magnetotelluric (MT)/long period Magnetotelluric (LMT) survey is carried out in northern part of Saurashtra. Different dimensionality techniques were used to assess the structural dimensionality of the electrical conductivity of the earth and were compared.

      $\bullet$ Analysis of MT sites by using various methods indicates the electrical conductivity structure is less complex at the shallowest depths with mixed 1D and 2D cases that are affected by galvanic distortion. Both MT/LMT denote complex 3D nature from middle and lower depths.2D inversion of MT/LMT data brings out large-scale heterogeneities in the crust. This is attributed to different resistive and conductive blocks present at mid-crustal depths and extending up to lower crustal depths and correlates with dimensionality analysis.

    • Author Affiliations

       

      P V VIJAYA KUMAR1 2 P B V SUBBA RAO1 A K SINGH1 AMIT KUMAR1 P RAMA RAO3

      1. Indian Institute of Geomagnetism, Panvel, Navi Mumbai 410 218, India.
      2. Presently at NGRI, Hyderabad, India.
      3. Centre for Studies on Bay of Bengal, Andhra University, Visakhapatnam 530 003, India.
    • Dates

       
  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.