• Role of site effect for the evaluation of attenuation characteristics of P, S and coda waves in Kinnaur region, NW Himalaya

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/jess/129/0191

    • Keywords

       

      Kinnaur Himalaya; attenuation; quality factor; site effect.

    • Abstract

       

      The site effect and attenuation studies are carried out for Kinnaur region of northwest Himalaya, India. A total of 109 local events happened in Kinnaur region of magnitude range 1.6–4.5, are utilized for present work. The earthquake records are influenced by the site effect depending on soft sediment thickness beneath the recording sites. Therefore, in the present study, records are corrected for site effects to estimate P ($Q_{p}$), S ($Q_{s}$) and coda ($Q_{c}$) wave quality factor. The regional frequency dependent attenuation relations, i.e., $Q_{p}$(f)$=$(29$\pm$1)$f^{(1.01±0.05)}$, $Q_{s}$ (f)$=$(38$\pm$5)$f^{(1.1±0.06)}$ and $Q_{c}$(f)$=$(74$\pm$11)$f^{(1.17±0.01)}$ are established for the Kinnaur region. The Kinnaur Himalaya mainly belongs to Higher Himalaya Crystalline (HHC) and Tethys Himalaya, where these two geological units are differentiated by the South Tibetan Detachment System (STDS). The resonance frequencies and attenuation characteristics are estimated for both regions, i.e., HHC and Tethys Himalaya. A comparison is made between HHC and Tethys Himalaya in the form of resonance frequencies and attenuation properties. The low value resonance frequency and high rate of attenuation towards the northern side of STDS, i.e., Tethys Himalaya support the presence of low-grade metasedimentary rocks. It suggests that Tethys Himalaya has high seismic hazard potential zone compared to HHC.

      $\bf{Highlights}$

      $\bullet$Site effects have been incorporated to estimate attenuation characteristics of P, S and coda waves in Kinnaur region, NW Himalaya.

      $\bullet$The regional frequency dependent attenuation relations i.e., $Q_{p}$(f)=(29$\pm$1)$f^{(1.01±0.05)}$, $Q_{s}$ (f)=(38$\pm$5)$f^{(1.1±0.06)}$ and $Q_{c}$(f)=(74$\pm$11)$f^{(1.17±0.01)}$ are established for the Kinnaur region. The close resemblance of resonance frequencies with the geology of the study region has been observed.

      $\bullet$The Tethys Himalaya lies in present study region has high seismic hazard potential zone as compare to Higher Himalaya Crystalline.

    • Author Affiliations

       

      RICHA KUMARI1 2 PARVEEN KUMAR1 NARESH KUMAR1 SANDEEP 2

      1. Wadia Institute of Himalayan Geology, Dehradun, India.
      2. Banaras Hindu University, Varanasi, Uttar Pradesh, India.
    • Dates

       
  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.