• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/jess/129/0136

    • Keywords

       

      Thumper; refraction; RAU; Marmousi model; Himalayan; iterative SVI

    • Abstract

       

      Super-virtual interferometry (SVI) is a technique in which cross-correlation between consecutive receiver responses is carried out to obtain the virtual head-wave arrivals, which are then convolved with the initially recorded traces to get the super-virtual trace. SVI can be used to enhance the refracted phases by stacking all the arrivals acquired using multiple shots at one position, leading to an improved SNR by a factor of $\surd n$, where $‘n’$ is the number of sources and receivers to generate the head-waves. In this study, we have generated few synthetic common shot gathers (CSGs) using forward modelling over a three-layer velocity–depth model with an embedded spherical anomaly, a complex five-layer velocity–depth model and the Marmousi model. Certain amount of noise is added on these gathers and then SVI technique is applied on the gathers which has resulted in an improved SNR of refracted phases at the far offset. We have further tested this technique on a field dataset acquired from the Kumaon Himalayan region using a 450 kg thumper as an energy source and 111 active channel remote acquisition unites (RAUs) with 5 Hz geophones as sensors. The resulting SVI gathers show the refracted arrivals more clearly. Continuity in the phases is increased after stacking and iterative SVI.

    • Author Affiliations

       

      VAIBHAV JAIN1 DIBAKAR GHOSAL1 SHASHANK NARAYAN VERMA1

      1. Department of Earth Sciences, Indian Institute of Technology, Kanpur 208 016, India.
    • Dates

       
  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.