• Fluvial facies and petrography of Late Pleistocene Baneta sediments, Central Narmada Basin, Madhya Pradesh, India

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/jess/129/0061

    • Keywords

       

      Quaternary; Narmada; fluvial facies; meandering river; provenance; monsoon; Pleistocene

    • Abstract

       

      Baneta Formation, comprising of fining upward sequences of pebbly conglomerate, sandstone and siltstone, exhibits development of five distinct lithofacies, viz., massive pebbly conglomerate, large scale tabular cross bedded sandstone, horizontal parallel bedded coarse-grained sandstone, parallel laminated fine-grained yellowish sandstone and siltstone; representing channel lag, point bar and overbank flood plain deposits of mixed load meandering river. In these sediments, development of nodular, buckled bedded calcrete, rhizoliths and tepee is noticed. Granulometric studies of these sediments revealed presence of wide range of grain size classes, polymodal grain size distribution, moderate to very poor sorting, positive skewness and leptokurtic nature, supporting fluvial environment of deposition. Lithic arenitic nature, heavy mineral assemblage with dominance of augite and low ZTR index of these sediments indicate mineralogical immaturity and presence of illite, kaolinite and montmorllionite together with geochemical composition indicate their derivation from mixed provenance of Precambrian granite, metapelites, Vindhyan Supergroup, Gondwana Supergroup, Deccan trap basalt, and laterite. The thin sections studies reveal signatures of meteoric phreatic and vadose zone diagenesis related with semi-arid climate and subaerial exposure. The $\delta^{13}\rm{C}$ and $\delta^{18}\rm{O}$ content of calcretes indicate their pedogenic and/or shallow groundwater origin under semi-arid climatic conditions, and C3–C4 mixed vegetation with dominance of C4 vegetation. $\rm{OSL}$ and $^{14}\rm{C}$ dates of the samples from Baneta Formation suggest deposition of these sediments in Late Pleistocene.

    • Author Affiliations

       

      M G KALE1 ASHWIN S PUNDALIK2 DEVENDER KUMAR3

      1. Department of Geology, Savitribai Phule Pune University, Pune 411 007, India.
      2. Department of Geology, St. Xavier’s College, Mumbai 400 001, India.
      3. CSIR–National Geophysical Research Institute, Hyderabad 500 007, India.
    • Dates

       
  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.