• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/jess/129/0021

    • Keywords

       

      Tectonics; bimodal volcanism; Cuddapah basin; Tadpatri Formation; volcaniclastics

    • Abstract

       

      Bimodal volcanism in the Cuddapah basin is associated with a cratonic rift setting. The Cuddapah basin consists of five sub-basins (viz., Papaghni, Nallamalai, Srisailam, Kurnool and Palnad) and a total thickness of $\sim$12 km sediments and associated bimodal volcanics. The oval-shaped gravity high observed over the Papaghni sub-basin is due to lopolithic intrusions along listric faults. A basin evolution model is prepared in this context with signatures of active rifting.Mapping and geochemical sampling along the Tadpatri–Tonduru tract along with petrographic observations additionally supports the proposed model. The model presents the mechanism of bimodal volcanism during rifting and sedimentation. Basin evolution with tectonic modifications revealed a link with global tectonic events (e.g., $\sim$1.8 Ga Hudsonian orogeny, $\sim$1.3 Ga Grenville orogeny, $\sim$0.9 Ga Enderbia docking). The stratigraphic disposition of the surge, flow, fall and volcaniclastic deposits in this old Proterozoic terrane indicate the magma history and eruption conditions. The felsic volcanic rocks are classified as rhyolite and rhyodacite. The mafic volcanics are mainly basaltic. Primordial mantle normalized trace element plots indicate enrichment of large ion lithophile elements (Rb, Th and K) along with negative Sr, P and Ti anomalies. The chondrite normalized REE patterns are characterized by LREE enrichment, negative Eu anomaly and flat HREE pattern. These features indicate origin of felsic volcanics through shallow crustal melting with plagioclase either as a residual or a fractionating phase. The mafic rocks of the area are product of shallow mantle melting related to asthenospheric upwelling followed by decompression melting and generation of basaltic magma. This was also associated with lithosphereic stretching, rifting and initiation of sedimentation. The less viscous mafic magma was probably channelized along the rift-related faults. The underplating and intraplating of hot mantle-derived magma supplied heat into the crust. The attendant partial melting of continental crust produced the felsic magma. Different sub-basins within the Cuddapah basin indicates a combined mechanism of rifting and orogenic events.

    • Author Affiliations

       

      SUKANTA GOSWAMI1 SUKANTA DEY2 SYED ZAKAULLA1 M B VERMA3

      1. Atomic Minerals Directorate for Exploration and Research, Bengaluru 560 072, India.
      2. IISER Kolkata, West Bengal 741 246, India.
      3. Atomic Minerals Directorate for Exploration and Research, Hyderabad 500 016, India.
    • Dates

       
  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.