• Energetics of Indian winter monsoon

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/jess/127/05/0073

    • Keywords

       

      Indian winter monsoon; topography; budget; mesoscale model; synoptic weather system

    • Abstract

       

      The Indian subcontinent is characterized by complex topography and heterogeneous land use-land cover. The Himalayas and the Tibetan Plateau are spread across the northern part of the continent. Due to its highly variable topography, understanding of the prevailing synoptic weather systems is complex over the region. The present study analyzes the energetics of Indian winter monsoon (IWM) over the Indian subcontinent using outputs of mesoscale model (MM5) forced with National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR), US, initial and boundary conditions. MM5 modeling framework, designed to simulate or predict mesoscale atmospheric circulations, is having a limited-area, non-hydrostatic and terrain following 12 sigma levels. The IWMenergetics is studied using MM5 model outputs. Prior to this model’s validity and deviation from the corresponding observations (NCEP/NCAR) is assessed. The model’s overestimation/underestimation of wind, temperature and specific humidity at upper troposphere proves that the model has difficulty in picking up corresponding fields at all the model grid points because of terrain complexity over the Himalayas and Tibetan Plateau. Hence, the model fields deviate from the corresponding observations. However, model results match well with the winter global energy budget calculated using reanalysis dataset by Peixoto and Oort (1992). It suggests MM5 model’s fitness in simulating large scale synopticweather systems. And, thus the model outputs are used for calculation of energetics associated with IWM. It is observed that beyond 15◦N lower as well as upper level convergence of diabatic heating, which represents continental cooling and sinking of heat from atmosphere to land mass (i.e., surface is cooler than surrounding atmosphere) dominates. The diabatic heating divergence (cooling of continents)is found over ocean/sea and whole of the China region, Tibetan and central Himalayas (because of excess condensation than evaporation). The adiabatic generation of kinetic energy depends on the cross isobaric flow (north to south in winter, i.e., the present study shows strong circulation during IWM). It is foundthat wind divergence of model concludes lower level convergence over study region (i.e., strong winter circulation in the model fields).

    • Author Affiliations

       

      P Kumar1 A P Dimri1

      1. School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
    • Dates

       
  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.