Lithologic boundaries from gravity and magnetic anomalies over Proterozoic Dalma volcanics
Pramod Kumar Yadav P K Adhikari Shalivahan Srivastava Ved P Maurya Anurag Tripathi Shailendra Singh Roshan K Singh Ashish K Bage
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/jess/127/02/0017
Dalma volcanics (DVs) has intruded the older Singhbhum Group of Metapelites. Despite DVs being rich in mineralisation, its boundaries are not clearly demarcated. Gravity and magnetic surveys have been attempted for mapping the boundaries in DVs. These surveys were made in the northern fringeof the DVs over an area of ∼0.70 km2 along 13 parallel lines at 50 m spacing. The data was acquired at ∼25 m spacing. The surveys were taken for determination of lithological boundaries, depths and nature of causative source using Euler depth solutions and radially averaged power spectrum (RAPS).Residual anomaly maps of gravity and magnetic intensity show the same trend as that of Bouguer gravity anomaly and total magnetic intensity anomaly map indicating towards shallow sources. The magnetic map in general follows the same pattern as that of gravity anomaly maps. The map shows coincident highgravity and magnetic anomalies. These anomalies together with resistivity signatures confirm that the northern fringe of DVs hosts volcanogenic massive sulphide settings. The Euler depth solution delineated the lateral boundaries and nature of the source. It seems that the source is of spherical nature lying withina depth range of 25–40 m. The obtained lithological (vertical) units from RAPS are between Lower DVs, Upper DVs and Singhbhum Group Metapelites at depths of ∼15, ∼25 and ∼40 m, respectively. The metallogeny is associated with the Upper DVs and the corresponding delineated lithological (vertical) unit is indicative of the top of the ore body. Good agreement is observed with the geological successionfrom the drilling data and resistivity data. The findings suggest that the northern fringe of DVs could be a preferred target for drilling.
Pramod Kumar Yadav1 P K Adhikari2 Shalivahan Srivastava3 Ved P Maurya4 Anurag Tripathi1 Shailendra Singh5 Roshan K Singh3 Ashish K Bage6
Volume 132, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.