• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/jess/126/06/0079

    • Keywords

       

      Thunderstorm; MCS; CTBT; INSAT-3D; nowcast.

    • Abstract

       

      India experiences severe thunderstorms during the months, March–June. But these systems are not predicted well, mainly due to the absence of mesoscale observational network over Indian region and the expert system. As these are short lived systems, the nowcast is attempted worldwide based on satellite and radar observations. Due to inadequate radar network, satellite plays the dominant role for nowcast of these thunderstorms. In this study, a nowcast based algorithm ForTracc developed by Vila et al. (Weather Forecast 23:233–245, 2008) has been examined over the Indian region using Infrared Channel (10.8 μm) of INSAT-3D for prediction of Mesoscale Convective Systems (MCS). In this technique, the current location and intensity in terms of Cloud Top Brightness Temperature (CTBT) of the MCS are extrapolated. The purpose of this study is to validate this satellite-based nowcasting technique for Convective Cloud Clusters that helps in optimum utilization of satellite data and improve the nowcasting. The model could predict reasonably the minimum CTBT of the convective cell with average absolute error (AAE) of <7 K for different lead periods (30–180 min). However, it was underestimated for all the lead periods of forecasts. The AAE in the forecasts of size of the cluster varies from about 3×104 km2 for 30-min forecast to 7×104 km2 for 120-min forecast. The mean absolute error in prediction of size is above 31–38% of actual size for different lead periods of forecasts from 30 to 180 min. There is over estimation in prediction of size for 30 and 60 min forecasts (17% and 2.6% of actual size of the cluster, respectively) and underestimation in 90 to 180-min forecasts (–2.4% to –28%). The direct position error (DPE) based on the location of minimum CTBT ranges from 70 to 144 km for 30–180-min forecast respectively.

    • Author Affiliations

       

      Suman Goyal1 Ashish Kumar1 M Mohapatra1 L S Rathore1 S K Dube2 Rahul Saxena1 R K Giri1

      1. India Meteorological Department, Lodi Road, New Delhi 110 003, India.
      2. Amity University, Jaipur 303 007, Rajasthan, India.
    • Dates

       
  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.