• Accuracy analysis of the 2014–2015 Global Shuttle Radar Topography Mission (SRTM) 1 arc-sec C-Band height model using International Global Navigation Satellite System Service (IGS) Network

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/jess/125/05/0909-0917

    • Keywords

       

      Geodesy; error; accuracy; geo-referencing; GPS/GNSS; radar; DEM/DTM; DTED; SRTM

    • Abstract

       

      Global Shuttle Radar Topography Mission (SRTM) data products have been widely used in EarthSciences without an estimation of their accuracy and reliability even though large outliers exist in them.The global 1 arc-sec, 30 m resolution, SRTM C-Band (C-30) data collected in February 2000 has beenrecently released (2014–2015) outside North America. We present the first global assessment of thevertical accuracy of C-30 data using Ground Control Points (GCPs) from the International GNSS Service(IGS) Network of high-precision static fiducial stations that define the International Terrestrial ReferenceFrame (ITRF). Large outliers (height error ranging from –1285 to 2306 m) were present in the C-30dataset and 14% of the data were removed to reduce the root mean square error (RMSE) of the datasetfrom ∼187 to 10.3 m which is close to the SRTM goal of an absolute vertical accuracy of RMSE ∼10 m.Globally, for outlier-filtered data from 287 GCPs, the error or difference between IGS and SRTM heightsexhibited a non-normal distribution with a mean and standard error of 6.5 ± 0.5 m. Continent-wise,only Australia, North and South America complied with the SRTM goal. At stations where all the XandC-Band SRTM data were present, the RMSE of the outlier-filtered C-30 data was 11.7 m. However,the RMSE of outlier-included dataset where C- and X-Band data were present was ∼233 m. The resultssuggest that the SRTM data must only be used after regional accuracy analysis and removal of outliers.If used raw, they may produce results that are statistically insignificant with RMSE in 100s of meters.

    • Author Affiliations

       

      Manas Mukul1 Vinee Srivastava2 Malay Mukul2

      1. KIIT University, Bhubaneswar 751 024, India.
      2. Continental Deformation Laboratory, Department of Earth Sciences, Indian Institute of Technology Bombay, Mumbai 400 076, India.
    • Dates

       
    • Supplementary Material

       
  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.