• Characteristics of surface wind structure of tropical cyclones over the north Indian Ocean

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/jess/124/07/1573-1598

    • Keywords

       

      Tropical cyclone; surface wind radii; north Indian Ocean.

    • Abstract

       

      Tropical cyclone (TC) wind field monitoring and forecast are important for mariners, ships on sea and modelling group for creation of synthetic vortex, and storm surge and coastal inundation forecasting. Among others, a multi-platform satellite surface wind analysis developed by Co-operative Institute for Research in the Atmosphere (CIRA), USA for the TCs are referred by India Meteorological Department for surface wind field monitoring of TC. Hence, a study has been undertaken to analyze the characteristics of surface wind distribution and hence the structure of TC based on the real time data available from CIRA during 2007–2013. The study includes 19 TCs over the Bay of Bengal (BOB) and six over Arabian Sea (AS). The maximum radial extent of winds reaching threshold values of 34(17), 50(26) and 64(33) knot (ms−1) in each of the four geographical quadrants has been segregated with respect to season of formation, basin of formation and intensity of TC for analysis. The objective is to develop a reference surface wind structure of TC and examine its validity with respect to physical processes.

      The size of outer core (34(17) knot (ms−1) wind radial extension) as well as inner core (50(26) and 64(33) knot (ms−1) wind radial extension) increases significantly with increase in intensification of TC over BOB during both pre-monsoon and post-monsoon seasons and over AS during pre-monsoon season. The outer core of winds in TCs over the BOB is asymmetric in both pre-monsoon and post-monsoon seasons and for all categories of intensity of TCs. On the other hand, the asymmetry in inner core winds is significantly less. There is also no asymmetry in radial wind extension over the AS during both the seasons, except in case of outer core wind radial extension of VSCS during pre-monsoon season. The low level environment like enhanced cross equatorial flow, lower/middle level relative humidity, vertical wind shear and proximity of TC to the land surface are the determining factors for the size and asymmetry of TCs over the NIO.

    • Author Affiliations

       

      M Mohapatra1 Monica Sharma1

      1. India Meteorological Department, Mausam Bhavan, Lodi Road, New Delhi 110 003, India.
    • Dates

       
  • Journal of Earth System Science | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.