• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/jess/123/07/1637-1652

    • Keywords

       

      Cyclone genesis potential parameter (GPP); Multi-Model Ensemble (MME) technique; cyclone track and intensity prediction; rapid intensification; decay.

    • Abstract

       

      An objective NWP-based cyclone prediction system (CPS) was implemented for the operational cyclone forecasting work over the Indian seas. The method comprises of five forecast components, namely (a) Cyclone Genesis Potential Parameter (GPP), (b) Multi-Model Ensemble (MME) technique for cyclone track prediction, (c) cyclone intensity prediction, (d) rapid intensification, and (e) predicting decaying intensity after the landfall. GPP is derived based on dynamical and thermodynamical parameters from the model output of IMD operational Global Forecast System. The MME technique for the cyclone track prediction is based on multiple linear regression technique. The predictor selected for the MME are forecast latitude and longitude positions of cyclone at 12-hr intervals up to 120 hours forecasts from five NWP models namely, IMD-GFS, IMD-WRF, NCEP-GFS, UKMO, and JMA. A statistical cyclone intensity prediction (SCIP) model for predicting 12 hourly cyclone intensity (up to 72 hours) is developed applying multiple linear regression technique. Various dynamical and thermodynamical parameters as predictors are derived from the model outputs of IMD operational Global Forecast System and these parameters are also used for the prediction of rapid intensification. For forecast of inland wind after the landfall of a cyclone, an empirical technique is developed. This paper briefly describes the forecast system CPS and evaluates the performance skill for two recent cyclones Viyaru (non-intensifying) and Phailin (rapid intensifying), converse in nature in terms of track and intensity formed over Bay of Bengal in 2013. The evaluation of performance shows that the GPP analysis at early stages of development of a low pressure system indicated the potential of the system for further intensification. The 12-hourly track forecast by MME, intensity forecast by SCIP model, and rapid intensification forecasts are found to be consistent and very useful to the operational forecasters. The error statistics of the decay model shows that the model was able to predict the decaying intensity after landfall with reasonable accuracy. The performance statistics demonstrates the potential of the system for improving operational cyclone forecast service over the Indian seas.

    • Author Affiliations

       

      S D Kotal1 S K Bhattacharya1 S K Roy Bhowmik1 P K Kundu2

      1. India Meteorological Department, NWP Division, New Delhi 110 003, India.
      2. Department of Mathematics, Jadavpur University, Kolkata 700 032, India.
    • Dates

       
  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.