• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/jess/121/05/1113-1123

    • Keywords

       

      Satellite derived Global Precipitation Index rainfall; INSAT Multispectral Rainfall Algorithm; meteorological evaluation tools; MODE.

    • Abstract

       

      The INSAT Multispectral Rainfall Algorithm (IMSRA) technique for rainfall estimation, has recently been developed to meet the shortcomings of the Global Precipitation Index (GPI) technique of rainfall estimation from the data of geostationary satellites; especially for accurate short period rainfall estimates. This study evaluates the 3-hourly precipitation estimates by this technique as well as the rainfall estimates by the GPI technique using data of the Kalpana-1 satellite, over the Indian region for the south-west monsoon season of 2010 to understand their relative strengths and weaknesses in estimating short period rainfall. The gridded 3 hourly accumulated TRMM satellite (3B42 V6 product or TMPA product) and surface raingauge data for stations over the Indian region for the same period is used as the standard measure of rainfall estimates. The Method for Object-based Diagnostic Evaluation (MODE) utility of the METv3.0 software, has been used for the evaluation purpose. The results show that the new IMSRA technique is closer to the TMPA rainfall estimate, in terms of areal spread, geometric shape and location of rainfall areas, as compared to the GPI technique. The overlap of matching rainfall areas with respect to TMPA rainfall patches is also higher for the IMSRA estimates as compared to the GPI values. However, both satellite rainfall estimates are observed to be generally higher compared to the TMPA measurements. However, the values for the highest 10% of the rainfall rates in any rainfall patch, is generally higher for rainfall measured by the IMSRA technique, as compared to the estimates by the GPI technique. This may partly be due to the capping maximum limit of 3 mm/hr for rainfall measured by the GPI technique limits the total 3-hour accumulation to 9 mm even during heavy rainfall episodes. This is not so with IMSRA technique, which has no such limiting value. However, this general overestimation of the rainfall amount, measured by both techniques, and the greater error in case of IMSRA estimates, is also validated independently with respect to surface raingauge observations. Hence the observed overestimation by the IMSRA technique for the highest 10th percentile rainfall rates in rainfall episodes, is real. This overestimation by the latter technique may become a significant source of error, if the IMSRA estimate is used for monitoring very heavy rainfall episodes. In all other respects, since the IMSRA method shows significant improvement over the GPI, the rainfall estimates by the IMSRA method may be used for operational short period rainfall estimation.

    • Author Affiliations

       

      Soma Sen Roy1 Subhendu Brata Saha1 Hashmi Fatima1 S K Roy Bhowmik1 P K Kundu2

      1. India Meteorological Department, Lodi Road, New Delhi 110 003, India.
      2. Department of Mathematics, Jadavpur University, Kolkata 700 032, India.
    • Dates

       
  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.