• Site response of the Ganges Basin inferred from re-evaluated macroseismic observations from the 1897 Shillong, 1905 Kangra and 1934 Nepal earthquakes

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Historical earthquakes; site response; seismic hazard.

    • Abstract


      We analyze previously published geodetic data and intensity values for the $M_s = 8.1$ Shillong (1897), $M_s = 7.8$ Kangra (1905), and $M_s = 8.2$ Nepal/Bihar (1934) earthquakes to investigate the rupture zones of these earthquakes as well as the amplification of ground motions throughout the Punjab, Ganges and Brahmaputra valleys. For each earthquake we subtract the observed MSK intensities from a synthetic intensity derived from an inferred planar rupture model of the earthquake, combined with an attenuation function derived from instrumentally recorded earthquakes. The resulting residuals are contoured to identify regions of anomalous intensity caused primarily by local site effects. Observations indicative of liquefaction are treated separately from other indications of shaking severity lest they inflate inferred residual shaking estimates. Despite this precaution we find that intensites are 1–3 units higher near the major rivers, as well as at the edges of the Ganges basin. We find evidence for a post-critical Moho reflection from the 1897 and 1905 earthquakes that raises intensities 1–2 units at distances of the order of 150 km from the rupture zone, and we find that the 1905 earthquake triggered a substantial subsequent earthquake at Dehra Dun, at a distance of approximately 150 km. Four or more 𝑀 = 8 earthquakes are apparently overdue in the region based on seismic moment summation in the past 500 years. Results from the current study permit anticipated intensities in these future earthquakes to be refined to incorporate site effects derived from dense macroseismic data.

    • Author Affiliations


      Susan E Hough1 Roger Bilham2

      1. U.S. Geological Survey, 525 S. Wilson Avenue, Pasadena, CA 91106, USA.
      2. CIRES and Geological Sciences, University of Colorado, Boulder CO, 80309-0399, USA.
    • Dates

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.