• Importance of quantification of local site effects based on wave propagation in seismic microzonation

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/jess/117/S2/0731-0748

    • Keywords

       

      Basin-edge effects; surface waves; aggravation factor; spatial variability; finite difference method.

    • Abstract

       

      This paper presents the three most important aspects of seismic microzonation namely prediction of fundamental frequency (F0) of soil deposit, aggravation factor (aggravation factor is simply the extra spectral amplification due to complex 2D site effects over the 1D response of the soil column) and the spatial variability of the ground motion caused by the basin-edge induced Love waves. The predicted F0 of single, double and three-soil-layered models revealed that the available empirical relations to predict the F0 of layered soil deposits are inadequate. We recommend the use of analytical or numerical methods to predict such an important parameter based on wave propagation effects. An increase of amplitude of Love wave, strain level and average aggravation factor (AAF) with increase of impedance contrast was obtained. Based on the trend of rate of decrease of AAF and maximum strain with offset from the basin-edge, we can qualitatively infer that the effects of induced Love wave may reduce to a negligible value after a traveled distance of 6.5–10.0 𝜆𝐹 (where 𝜆𝐹 is the wavelength corresponding to the $F_o$ of soil layer). The obtained increase of strain level with the decrease of distance between two receiver points used for the computation of strain reflects that structures having spatial extent smaller than the 𝜆F may suffer damage due to the basin-edge induced surface waves. The fast rate of decrease of strain with the offset from the strong lateral discontinuity (SLD)/basin-edge may be attributed to the dispersive nature of Love wave. We can incorporate the increased spectral amplification due to the induced surface waves in the form of aggravation factor but till date we have no effective way to incorporate the effects of developed strain by induced surface waves in seismic microzonation or in building codes.

    • Author Affiliations

       

      S Kumar1 J P Narayan1

      1. Department of Earthquake Engineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India.
    • Dates

       
  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.