• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Atmospheric Sciences; aerosols; remote sensing.

    • Abstract


      Aerosol optical depth (AOD) at 630nm wavelength over the oceanic regions adjoining the Asian Continent is examined using a seven-year long data base derived from the Advanced Very High Resolution Radiometer (AVHRR) on board NOAA satellite to study the mean spatial and temporal variations as well as to understand the impact of aerosols advecting from the continent. Depending on the prevailing meteorological conditions and nature of synoptic circulation, the AOD over the oceanic region shows a systematic annual variation. This annual pattern inturn also shows an inter-annual variability because of the corresponding variations in the meteorological features over the continent as well as small-scale deviations in the nature of synoptic circulation. The annual variation over the oceanic regions also shows a pronounced spatial heterogeneity depending on the influence of continental aerosols. Making use of the wind speed dependence of sea-salt AOD at far-oceanic environments and monthly mean wind speeds at small grids of size 5° × 5°, the annual variation of sea-salt AOD at different locations is studied to understand the spatial heterogeneity of this component. The residual component obtained by subtracting this from the measured AOD is the non-oceanic component due to advection from continent. The source regions for major continental advections are delineated from the analysis of air-mass back trajectories at appropriate locations identified from the annual pattern of non-oceanic component. The long-term effect of the continental impact is examined from the mean trend of AOD over the three major oceanic regions. This study shows that the continental influence is most significant over the Arabian Sea, followed by the Bay of Bengal and is almost insignificant in most of the regions over the Southern Hemispheric Indian Ocean, except for the effect of smoke aerosols over a few locations near Indonesia and Madagascar.

    • Author Affiliations


      K Parameswaran1 Sandhya K Nair1 K Rajeev1

      1. Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, India.
    • Dates

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.