• 2-D Crustal thermal structure along Thuadara–Sindad DSS profile across Narmada– Son lineament, central India

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      2-D thermal modeling; surface heat flow; crustal thermal structure; Curie depth, Narmada–Son lineament; Moho temperature.

    • Abstract


      Central India is traversed by a WSW–ENE trending Narmada–Son lineament (NSL) which is characterized by the presence of numerous hot springs, feeder dykes for Deccan Traps and seismicity all along its length. It is divided in two parts by the Barwani–Sukta Fault (BSF). To the west of this fault a graben exists, whereas to the east the basement is uplifted between Narmada North Fault (NNF) and Narmada South Fault (NSF). The present work deals with the 2-D thermal modeling to delineate the crustal thermal structure of the western part of NSL region along the Thuadara–Sindad Deep Seismic Sounding (DSS) profile which runs almost in the N–S direction across the NSL. Numerical results of the model reveal that the conductive surface heat flow value in the region under consideration varies between 45 and 47mW/m2. Out of which 23mW/m2 is the contribution from the mantle heat flow and the remaining from within the crust. The Curie depth is found to vary between 46 and 47 km and is in close agreement with the earlier reported Curie depth estimated from the analysis of MAGSAT data. The Moho temperature varies between 470 and 500°C. This study suggests that this western part of central Indian region is characterized by low mantle heat flow which in turn makes the lower crust brittle and amenable to the occurrence of deep focused earthquakes such as Satpura (1938) earthquake.

    • Author Affiliations


      S N Rai1 S Thiagarajan1

      1. National Geophysical Research Institute, Hyderabad 500 007, India.
    • Dates

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.