Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/jess/114/01/0075-0086
Physico-mechanical properties of rocks have great significance in all operational parts in mining activities, from exploration to final dispatch of material. Compressional wave velocity (p-wave velocity) and anisotropic behaviour of rocks are two such properties which help to understand the rock response under varying stress conditions. They also influence the breakage mechanism of rock. There are different methods to determine thep-wave velocity and anisotropyin situ and in the laboratory. These methods are cumbersome and time consuming. Fuzzy set theory, Fuzzy logic and Neural Networks techniques seem very well suited for typical geotechnical problems. In conjunction with statistics and conventional mathematical methods, hybrid methods can be developed that may prove to be a step forward in modeling geotechnical problems. Here, we have developed and compared two different models, Neuro-fuzzy systems (combination of fuzzy and artificial neural network systems) and Artificial neural network systems, for the prediction of compressional wave velocity.
Volume 132, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.