• Late Glacial and Holocene Paleolimnology of two temperate lakes inferred from sediment organic δ13C chronology

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Organic carbon; lake sediments; carbon isotope ratios; lake productivity

    • Abstract


      The stable carbon isotope (δ13C) and elemental C/N ratios in Total Organic Carbon (TOC) extracted from radiometrically dated cores from two Midwestern USA lakes were determined to investigate the factors that control these values in temperate lakes. The range of δ13C values (-26 to -32%) and C/N ratios (mean value ∼10.8) are typical of values reported for other temperate lake organic matter in this region. In the core from Lake Winnebago, Wisconsin, a negative correlation was seen between the TOC and δ13C, which can be interpreted in terms of a re-mixing and consumption of sedimented organic carbon along with rapid equilibration throughout the water column. No correlation was seen between the TOC and δ13C in the record from Ladd Lake, Ohio, implying that in this latter lake productivity alone was not a singular process controlling the isotope ratio. Here, it is suggested that equilibrium conditions are maintained such that the DIC of the water is never depleted of aqueous CO2 during high organic production and the resulting δ13C of the organic carbon lacks correlation with the TOC. Further, in this lake a fine resolution analysis was carried out which indicated a possible anthropogenic influence on the isotope ratio around times when human settlement (∼300 yrs ago) and enhanced agricultural practices (∼80 yrs ago) were significant. The study shows that carbon isotope studies are useful in paleolimnologic investigations.

    • Author Affiliations


      N A Lovan1 R V Krishnamurthy1

      1. Department of Geology, Western Michigan University, Kalamazoo, Michigan, USA
    • Dates

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.