• Strain variation in fold-and-thrust belts: Implications for construction of retrodeformable models

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Strain; thrust; retrodeformable cross sections; fault; structural geology

    • Abstract


      Deformation in fold-and-thrust belts such as the Himalayas can be represented by the displacement vector field. The strain component of the displacement vector field across the fold-and-thrust belt varies from near zero in external thrust sheets to a significant part of the field in internal thrust sheets. In addition, strain exhibits three-dimensional patterns in parts of internal sheets, near fault zones, and in the overturned limbs of fault-related folds due to superposition of penetrative-strain producing deformation events. This paper examines superposition of these strain producing deformation events in some detail and points out situations in fold-and-thrust belts wherein the finite strain becomes three-dimensional. This suggests that the plane-strain assumption used in the construction of retrodeformable models of fold-and-thrust belt evolution breaks down in these situations and the models lose their validity. Therefore, current techniques used for construction of retrodeformable models in fold-and-thrust belts need to be modified and three-dimensional models which include three-dimensional finite and incremental strain data need to be constructed for an accurate study of the evolution of geometry and kinematics in fold-and-thrust belts.

    • Author Affiliations


      Malay Mukul1

      1. CSIR Centre for Mathematical Modelling and Computer Simulation, Bangalore - 560 037, India
    • Dates

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.