• A balanced cross section across the Himalayan foreland belt, the Punjab and Himachal foothills: A reinterpretation of structural styles and evolution

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/jess/108/03/0189-0205

    • Keywords

       

      Balanced cross section; Himalayan foreland fold-thrust belt; Siwalik Hills; crustal shortening; synchronous thrusting

    • Abstract

       

      The Siwaliks in the foothills of the Himalayas, containing molasse sediments derived from the rising mountain front, represent a foreland fold-thrust belt which was deformed during the continued northward convergence of the Indian plate following the continent-continent collision. In this contribution we present balanced and restored cross sections along a line from Adampur through Jawalamukhi to Palampur in the foothills of the Punjab and Himachal Himalayas using published surface/subsurface data. The cross section incorporates all the rock units of the Sub-Himalaya Zone as well as that of the northern Lesser Himalaya Zone. The structural geometry of the fold-thrust belt in this section is largely controlled by three buried thrusts within the Sundernagar Formation of the Lesser Himalaya Zone. Two of these buried thrusts splay from the basal detachment and delineate a buried horse. Three thrusts towards foreland, including the Main Frontal Thrust (inferred to be a blind thrust in this sector), splay from these buried thrusts. In the hinterland, an anticlinal fault-bend fold was breached by a sequence of break-back thrusts, one of which is the Main Boundary Thrust. A foreland propagating thrust system is inadequate to explain the evolution of the fold-thrust-belt in this section. We show that a “synchronous thrusting” model in whichin-sequence initiation of thrusts at depth combined with continued motion on all the thrusts leading toout-of-sequence imbrication at the upper structural levels better explains the evolution of the fold-thrust belt in the Jawalamukhi section. The estimated shortening between the two chosen pin lines is about 36% (about 72 km).

    • Author Affiliations

       

      Dilip K Mukhopadhyay1 Premanand Mishra1

      1. Department of Earth Sciences, University of Roorkee, Roorkee, 247667, U.P., India
    • Dates

       
  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.