• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Lake sediment; grain-size parameters; palaeo-environment; Nal Sarovar and clay minerals

    • Abstract


      A 54-m long core was raised from the bed of the Nal Sarovar, a large shallow lake located in the middle of the low-lying region linking the Gulfs of Kachchh and Khambhat, in western India. A three-layer sequence comprising: Zone-1 (top 3 m), predominantly silty-clay/clayey; Zone-2 (3–18 m), sandy; and Zone-3 (18–54 m), dominated by sticky silty-clay/clayey-silt with occasional thin sand layers and basalt fragments was identified. Smectite and illite are the dominant clay minerals with minor amounts of kaolinite and chlorite. Very high content of smectite (53–97%) in the clays of the lowermost zone (18–54 m) and the geomorphic features of the surrounding region suggested that the sediments were derived from the basaltic terrain of Saurashtra and/or via the Gulf of Khambhat. The clay content in the middle zone (3–18 m), dominantly sandy, is very low. Therefore, provenance for this zone was derived using heavy minerals in the sand fraction. The heavy mineral species in this zone suggested the mixed metamorphic and igneous terrain of Aravallis as the major source. The grain-size distribution of this zone closely matched with the sediments underlying the modern Sabarmati riverbed at Ahmedabad, suggesting fluvial depositional environment. Clays also dominate sediments of the topmost (0–3 m) zone with illite as the dominant (74–81%) specie followed by smectite suggesting derivation from the mixed metamorphic and igneous terrain of Aravallis.

    • Author Affiliations


      K Pandarinath1 Sushma Prasad1 R D Deshpande1 S K Gupta1

      1. Physical Research Laboratory, Post Box No. 4218, Navrangpura, Ahmedabad - 380 009, India
    • Dates

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.