• The “susceptibility factor” in the atmospheric response to periodic forcing

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Monsoon; lunar effects; spectral analysis

    • Abstract


      Evidence is presented of a periodic component in the inter-annual variability of precipitation and pressure data for India during June, the month of the onset of the Indian southwest monsoon. Two frequencies that explain a statistically significant percent of the variance in these data sets are the same as the two that explain most of the variance of the average monthly lunar tidal potential for June. Not only are the frequencies the same but they are also in phase which strongly suggests that lunar tides in the atmosphere do, in fact, produce an element of climatic variability. The amplitude of the atmospheric response to this periodic forcing was not constant in time but was found to be related to the long term change in northern hemispheric surface temperature. This susceptibility of the atmosphere to an external forcing results in a nonlinear relationship between forcing and response. As a result, nonlinear regression had to be used in order to adequately define the magnitude of the response at a given frequency. The ramifications of this nonlinear response are discussed. The nonlinear interaction of the northern hemisphere temperature and the 18.6 year lunar nodal cycle results in a modulation of the frequency which appears in a linear spectral analysis near 22 years. Thus, the 22-year cycle often found in meteorological data sets may instead be the result of the modulated nodal cycle.

    • Author Affiliations


      William H Campbell1 Reid A Bryson1

      1. Center for Climatic Research, Institute for Environmental Studies, University of Wisconsin-Madison, 1225 W. Dayton Street, Madison, Wisconsin - 53706, USA
    • Dates

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.