• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/jcsc/132/0007

    • Keywords

       

      Nanoconfinement; Water clusters; Carbon nanotubes; Density functional theory.

    • Abstract

       

      An ab initio investigation on water clusters confined to armchair carbon nanotubes (CNT) with varying diameters has been performed using the density functional theory-based calculations. Different parameters have been investigated including structure, hydrogen bonding pattern and vibrational spectra of water-CNT complexes. Our results reveal that one-dimensional water chain parallel to CNT axis is formed in narrow nanotubes CNT(4,4) and CNT(5,5), whereas in CNT(6,6), zigzag structure is observed. An increase in the CNT diameter results in more symmetric structures similar to the gas phase. The vibrational analysis shows a redshift in stretching frequency of the hydrogen bond assisted O–H in CNT(6,6) due to the reduction in O—O separation whereas a significant blue shift in stretching frequency mode is observed in highlyconfined CNT(4,4) and CNT(5,5). It implies that the hydrogen bond strength between water molecules is strongest in CNT(6,6). It is also observed that water cluster tends to be near CNT wall due to H...p interaction between water molecule and the p-electron cloud of CNT. An inverse relation between the electronic charge transfer (from CNT to water) and the diameter is also established. This study demonstrates that the degree of confinement is extremely important in deciding the properties of confined water molecules.

    • Author Affiliations

       

      MANOJ K TRIPATHY1 2 DEVENDRA K MAHAWAR3 K R S CHANDRAKUMAR2 4

      1. Research Reactor Services Division, Bhabha Atomic Research Centre, Mumbai 400 085, Maharashtra, India
      2. Homi Bhabha National Institute, Mumbai 400 094, Maharashtra, India
      3. Department of Chemistry, University of Rajasthan, Jaipur 302 004, Rajasthan, India
      4. Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai 400 085, Maharashtra, India
    • Dates

       
  • Journal of Chemical Sciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.