• Controlling the quantum rotational dynamics of a driven planar rotor by rebuilding barriers in the classical phase space

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Rigid rotor; dynamical tunneling; coherent control; phase space barriers; molecular alignment.

    • Abstract


      The present work aims to control the rotational excitations of an ac-driven planar rotor, a model for rigid diatomic molecules, by rebuilding barriers in the classical phase space. The barriers are invariant tori with irrational winding ratios which are perturbatively constructed at desired locations in the phase space. Weestablish that constructing such barriers, equivalent to additional weak fields, can efficiently suppress the chaos leading to the control of various processes. The phase space barriers are shown to be effective in controlling the quantum dynamics as well. In particular, the efficiency of the phase space barriers towards controlling dynamical tunneling in the system is explored. Our studies are relevant to understanding the role of the chaotic regions in dynamical tunneling and for molecular alignment using bichromatic fields.

    • Author Affiliations

    • Dates

  • Journal of Chemical Sciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.