• Connecting diffusion and entropy of bulk water at the single particle level

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/jcsc/129/07/0825-0832

    • Keywords

       

      Single water entropy; Diffusion coefficient; Fragility.

    • Abstract

       

      The relation between the dynamic (e.g., diffusion) and thermodynamic (e.g., entropy) properties of water and water-like liquids has been an active area of research for a long time. Although several studies have investigated the diffusivity and entropy for different systems, these studies have probed either the configurational entropy or the excess entropy of the overall system. In this study, we focus on the entropy of water at a single molecule level at different temperatures. We have used a method developed in our group to calculate thetranslational and rotational entropy of individual water molecules at various temperatures. We find that the single water translational and rotational entropy exhibit a transition at around 240 K. The translational entropyof individual water molecules shows a consistent variation with change in temperature whereas the variation in the case of rotational entropy is much smaller at different temperatures. We have also calculated diffusioncoefficients of water molecules at these temperatures. We find that diffusion also shows the well-known fragile to strong crossover transition at around the same temperature where transition in entropy values has been seen. We have calculated both kinetic and thermodynamic fragilities and crossover points using diffusion and single water translational entropy values. Finally, we correlate the diffusion and translational entropy of individual water molecules using an analog of the Adam-Gibbs relation.

    • Author Affiliations

       
    • Dates

       
  • Journal of Chemical Sciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.