• Solid-state Photochemical [2+2] Cycloaddition Reaction of Hydrogen-Bonded Zn(II) Metal Complex Containing Several Parallel C=C Bonds

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/jcsc/129/02/0239-0247

    • Keywords

       

      Hydrogen-bonded metal complex; solid-state photoreaction; topochemical reaction; 4,4'-bipyridylethylene.

    • Abstract

       

      A 2D hydrogen-bonded dinuclear Zn(II) complex, [{Zn(H₂O) ₃ (bpe) ₂} ₂ (bpe)](NO₃) ₄・3bpe・14H₂O,1 (bpe = 4,4_-bipyridylethylene) containing coordination complex cations, [{Zn(H₂O) ₃ (bpe) ₂} ₂ (μ-bpe)] ⁴⁺and free bpe and lattice water molecules shows face-to-face, π ・ ・ ・ π stacking of two of the four free bpemolecules with coordinated bpe ligands. Out of eight bpe molecules, six are aligned in parallel fashion withshort C・ ・ ・ C distances of 3.663–3.814Å and they undergo photochemical [2+2] cycloaddition reaction. The photoreaction conducted on ground sample of 1 in the solid-state affords rctt-tetrakis(4-pyridyl)cyclobutane (rctt-tpcb) product in 75% yield. The molecular movement of free bpe molecules was tested by conducting thephotoreaction in ground sample and heated sample of single crystals. The photoreactivity study of 1 indicates that the free bpe molecules are locked between the cationic [{Zn(H₂O) ₃ (bpe) ₂} ₂ (bpe)] ⁴⁺ layers.

    • Author Affiliations

       
    • Dates

       
    • Supplementary Material

       
  • Journal of Chemical Sciences | News

© 2021-2022 Indian Academy of Sciences, Bengaluru.