Catalytic decomposition of N₂O over CeO₂ supported Co₃O₄ catalysts
S K MAHAMMADUNNISA T AKANKSHA K KRUSHNAMURTY CH SUBRAHMANYAM
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/jcsc/128/11/1795-1804
This work was aimed to design efficient catalysts for N₂O decomposition at low temperatures. Cobalt oxide (Co₃O₄) was prepared by hydrothermal, precipitation and combustion methods and tested for N₂O decomposition. It was found that the catalysts prepared by solution combustion synthesis were most active for this reaction. Subsequently, a series of ceria (CeO₂) supported Co₃O₄ catalysts (xCeCo) were prepared by solution combustion method and used them for N₂O decomposition. All the catalysts were characterized by analytical methods like XRD, TEM, BET, XPS, UV-Vis, Raman and H2-TPR. It was found that 10 and 20 wt..% loading of CeO₂ on Co₃O₄ promoted the activity of Co₃O₄ towards N₂O decomposition, whereas, higher loading of CeO₂ reduced the activity. Typical results indicated that addition of CeO₂ increases the surface area of Co₃O₄ , and improves the reduction of Co³⁺ to Co²⁺ by facilitating the desorption of adsorbed oxygen species, which is the rate-determining step for the N₂O decomposition over Co₃O₄ spinel catalysts. Optimal CeO₂ loading can increase both dispersion and surface area of Co₃O₄ catalysts and weaken the Co–O bond strength to promote N₂O decomposition.
Volume 135, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.