• The elusive ≡C-H· · ·O complex in the hydrogen bonded systems of Phenylacetylene: A Matrix Isolation Infrared and Ab Initio Study

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Methanol; hydrogen bonded systems; Diethyl ether; ab initio computations; matrix isolation; infrared spectroscopy.

    • Abstract


      Hydrogen-bonded complexes of phenylacetylene (PhAc) with methanol (MeOH) and diethylether (DEE) were studied using matrix isolation infrared spectroscopy. This study specifically searched for the ≡CH · · ·O hydrogen bonded complex in these systems, which manifest a n-σ* interaction and which is a local minimum on the PhAc-MeOH potential surface, as in the case of PhAc-H2O heterodimer. This n-σ* local minimum eluded observation in gas phase studies and it was therefore thought interesting to look for this isomer in cryogenic matrices.While MeOH can interact with PhAc as both a proton donor (O-H· · ·π complex) or a proton acceptor (n-σ* complex), DEE can only manifest the n-σ* isomer. A comparison of the spectral shifts observed in the features of PhAc-MeOH and PhAc-DEE would therefore independently confirm the existence or not of n-σ* complex in both these systems. In addition to the n-σ* complex observed in both the above systems, the O-H· · · π complex was also discerned in the PhAc-MeOH system. These complexes have stabilization energy in the range of 8-25 kJ/mol. The experimental results were corroborated by computations performed at MP2 and M06-2X, levels of theory, using 6-311++G(d,p) and aug-cc-pVDZ basis sets. Single point calculations at the CCSD level of theory were also performed. Atoms-in-molecules (AIM), NBO and LMOEDA analysis were also performed to understand the nature of the intermolecular interactions in these complexes.

    • Author Affiliations



      1. Department of Chemical Sciences, Indian Institute of Science Education and Research, Sector 81, Mohali, Punjab, 140 306 India
      2. Present address: Max-Planck-Institut für Struktur und Dynamik der Materie, Luruper Chaussee 149, D-22761 Hamburg, Germany
    • Dates

    • Supplementary Material

  • Journal of Chemical Sciences | News

© 2021-2022 Indian Academy of Sciences, Bengaluru.