• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Matrix isolation; pi-hydrogen bonding; infrared spectroscopy; spectral shifts; charge transfer.

    • Abstract


      Mid infrared spectra of two O–H· · · π hydrogen-bonded binary complexes of acetic acid (AA) and trifluoroacetic acid (F₃AA) with benzene (Bz) have been measured by isolating the complexes in an argon matrix at ∼8 K. In a matrix isolation condition, the O–H stretching fundamentals (νO−H) of the carboxylic acid groups of the two molecules are observed to have almost the same value. However, the spectral red-shifts of νO−H bands of the two acids on complexation with Bz are largely different, 90 and 150 cm⁻¹ for AA and F₃AA, respectively. Thus, the O–H bond weakening of the two acids upon binding with Bz in a non-interacting environment follows the sequence of their ionic dissociation tendencies (pKa) in aqueous media. Furthermore, ΔνO−H of the latter complex is the largest among the known π-hydrogen bonded binary complexes of prototypical O–H donors reported so far with respect to Bz as acceptor. It is also observed that the spectral shifts (ΔνO−H) of phenol-Bz and carboxylic acid-Bz complexes show similar dependence on the acidity factor (pKa). Electronic structure theory has been used to suggest suitable geometries of the complexes that are consistent with the measured IR spectral changes. Calculation at MP2/6-311++G (d, p) level predicts a T-shaped geometry for both AA-Bz and F₃AA-Bz complexes, and the corresponding binding energies are 3.0 and 4.5 kcal/mol, respectively. Natural Bond Orbital (NBO) analysis has been performed to correlate the observed spectral behavior of the complexes with the electronic structure parameters.

    • Author Affiliations

    • Dates

  • Journal of Chemical Sciences | News

© 2023-2024 Indian Academy of Sciences, Bengaluru.