• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/jcsc/126/06/1789-1801

    • Keywords

       

      Hydroxyketone; bond dissociation energy; isodesmic reactions; atmospheric lifetime.

    • Abstract

       

      Theoretical investigation has been carried out on the kinetics and reaction mechanism of the gas-phase reaction of 3-hydroxy-2-butanone (3H2B) with OH radical using dual-level procedure employing the optimization at DFT(BHandHLYP)/6-311++G(d,p) followed by a single-point energy calculation at the CCSD(T)/6-311++G(d,p) level of theory. The pre- and post reactive complexes are also validated at entrance and exit channels, respectively. Thus reaction may be proceed via indirect mechanism. The intrinsic reaction coordinate (IRC) calculation has also been performed to confirm the smooth transition from a reactant to product through the respective transition states. The rate coefficients were calculated for the first time over a wide range of temperature (250-450 K) and described by the following expression: kOH = 7.56 × 10−11exp[−(549.3 ± 11.2)/T] cm3 molecule-1s-1. At 298 K, our calculated rate coefficient 1.20 × 10−11 cm3 molecule-1 s-1 is in good agreementwith the experimental results. Our calculation indicates that H-abstraction from 𝛼-C-H site of 3H2B is the dominant reaction channel. Using group-balanced isodesmic reactions, the standard enthalpies of formation for 3H2B and radicals generated by hydrogen abstraction are reported for the first time. The branching ratios of the different reaction channels are also determined. Also, the atmospheric lifetime of 3H2B is also calculated to be 1.04 days.

    • Author Affiliations

       

      Nand Kishor Gour1 Satyendra Gupta1 Bhupesh Kumar Mishra2 Hari Ji Singh1

      1. Department of Chemistry, D. D.U. Gorakhpur University Gorakhpur, Uttar Pradesh, 273 009, India
      2. Department of Chemical Sciences, Tezpur University Tezpur, Assam, 784 028, Ind
    • Dates

       
  • Journal of Chemical Sciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.