• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/jcsc/125/01/0017-0027

    • Keywords

       

      Ruthenium(II), polypyridyl ligands, spectroscopy, electrochemistry, DSSCs

    • Abstract

       

      Four new amphiphilic ligands: 4-(2,3-dimethylacrylic acid)-2,2'-bipyridine (L1), 4-(9-anthracenyl-10-(2,3-dimethylacrylic acid)-2,2'-bipyridine (L2), 5-(2,3-dimethylacrylic acid)-1,10-phenanthroline (L3) and 5-(9-anthracenyl-10-(2,3-dimethylacrylic acid)-1,10-phenanthroline (L4), with their corresponding homonuclear ruthenium(II) complexes formulated as cis-[Ru-(L1)3(PF6)2] (C1), cis-[Ru-(L2)3(PF6)2] (C2), cis-[Ru-(L3)3(PF6)2] (C3) and cis-[Ru-(L4)3(PF6)2] (C4), have been synthesized and characterized by elemental analysis, 1H- and 13C- NMR, FT-IR, UV-Vis and photoluminescence spectroscopy. The complexes exhibit broad and intense metal-to-ligand charge transfer (MLCT) transition bands in the visible region (400-700 nm), and red light emitting properties at room temperature. By comparison however, complexes C1 and C2 bipyridine moiety gave lower molar absorptivity coefficient at relatively similar wavelength characteristics (410-520 nm) when compared to C3 and C4 with phenanthroline based molecules. Cyclic voltammograms of the complexes revealed complex C4 with most reduction potential which might be due to increase in the conjugation of the anthracene functionalized units. Preliminary investigation of the solar cell efficiency of the complexes on TiO2 nanocrystalline films gave the best result with efficiency of 0.103% for C1 under illumination at 1000 W/m2 AM 1.5. Electrochemical impedance spectroscopy (EIS) technique however, revealed the charge transfer resistances (Rct) of the electrons on the TiO2 semiconductor.

    • Author Affiliations

       

      Adewale O Adeloye1 Peter A Ajibade1 Frances R Cummings2 Lukas J Le Roux2 Sampson N Mamphweli3 Edson L Meyer3

      1. Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, PMB X1314, Alice 5700, South Africa
      2. CSIR Materials Science and Manufacturing, PO Box 395, Pretoria 0001, South Africa
      3. Fort Hare Institute of Technology, University of Fort Hare, PMB X1314, Alice 5700, South Africa
    • Dates

       
  • Journal of Chemical Sciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.